4.2 激光表面合金化
國內(nèi)外在鎂合金表面采用合金化處理的研究較少,主要的研究是利用注人硬質(zhì)顆粒來提高合金化層的耐磨性。
印度的Majurndar J D等利用l0kW連續(xù)CO2激光器對(duì)MEZ采用Al+Mn,SiC和Al+Al2O3合金粉末進(jìn)行表面合金化處理,硬度由基體的35HV提高到合金化層的270HV,由于硬質(zhì)相SiC的存在,同時(shí)耐磨性得到了提高。
陳長軍等使用5kW的CO2激光器對(duì)表面上預(yù)置了Al-Y粉末的ZM5進(jìn)行了合金化處理,涂層硬度可達(dá)到250HV-325HV,而基材的硬度僅為80HV-l00HV。同基材相比,激光處理后的涂層耐蝕性得到顯著提高。
4.3 激光表面熔覆
與激光熔凝、激光合金化相比,國內(nèi)外對(duì)于鎂合金激光熔覆研究相對(duì)較活躍,鎂合金激光熔覆主要圍繞提高鎂合金的耐磨和耐蝕性進(jìn)行。
德國Maiwald T等用Al+Cu,Al+Si和AlSi30合金粉末對(duì)AZ91E和NEZ210進(jìn)行激光熔覆,Al+Si熔覆層的耐蝕性好于Al+Cu熔覆層,AlSi30熔覆層的耐蝕性最好。德國Bakkar A在碳纖維強(qiáng)化的AS41表面上激光熔覆Al-S,粉末,得到了與基休有良好交界區(qū)的熔覆層,且熔覆層的耐蝕性提高了。
黃開金等采用3.5kW激光器在AZ9ID表面有效地熔覆了非晶復(fù)合粉末Zr-Cu-Ni-Al/TiC,在非晶和金屬間化合物的作用下,熔覆層的硬度由基材的100HV0.1提高到850HV0.1左右,硬度提高了7倍左右,加人TiC后,硬度更是提高了9倍左右,同時(shí)熔覆層的耐磨性較基材提高了16倍。
通過表面改性來改善鎂合金結(jié)構(gòu)服役性能是一個(gè)重要的手段,將會(huì)成為鎂合金研究的重要方向之一,但這方面的工作,還遠(yuǎn)遠(yuǎn)做得不夠,可供實(shí)際借鑒的研究更是屈指可數(shù)。